
Chapter 3
Control of Nonhyperbolic Dynamical
Systems Through Center Manifold
Control

Firdaus E. Udwadia

Abstract This chapter proposes a simple approach for the control of nonlinear
dynamical systems with nonhyperbolic equilibrium points. Such equilibrium points
are generally much more difficult to analyze dynamically, and correspondingly the
control of nonlinear systems in the vicinity of such points can often become more
difficult. The aim is to bring about asymptotically stable behavior of the controlled
system in the vicinity of the nonhyperbolic equilibrium point. A new way to control
such systems is proposed here through control of their local center manifolds. A
simple and effective methodology for doing this is provided, and its advantages are
illustrated through several examples.
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3.1 Introduction

In local analysis of nonlinear dynamical systems, one of the most useful and
powerful results is the Grobman-Hartman (GH) result [1, 2] that proves topological
conjugacy in the vicinity of a hyperbolic equilibrium (fixed) point between a
nonlinear dynamical system and its linearization at that equilibrium point. By a
hyperbolic equilibrium point is meant one at which the Jacobian of the system has
eigenvalues whose real parts are nonzero, and by topological conjugacy is meant that
there is a continuous invertible bijective mapping that preserves the direction of time
and that maps the phase portrait of the nonlinear system to that of its linearization
in the vicinity of the equilibrium point.

When an equilibrium point of a nonlinear system is not hyperbolic, the Grobman-
Hartman (GH) result can no longer be used, and the dynamics that ensues in
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its vicinity can be considerably more complex and therefore more challenging to
control. One of the approaches to understanding the consequent dynamical behavior
in this situation is the use of results that utilize the concept of center manifolds [3–7].
The theory of center manifolds is a rigorous development of the theory of nonlinear
differential equations that includes systems with multiple timescales, especially
systems that have so-called slow and fast variables.

In this chapter, we consider an approach which is simple and straightforward for
the control of such systems and obtain controls that ensure asymptotic stability at
the nonhyperbolic equilibrium point along with a region of attraction that is often
reasonable in “size” (in phase space) from a practical engineering viewpoint.

Consider the nonlinear dynamical system described by the equations:

ẋ = Ax + f (x, y)

ẏ = By + g (x, y)
(3.1)

in which x ∈ R
n, y ∈ R

m, A and B are constant matrices and the dots denote
differentiation with respect to time. The matrix A is assumed to have eigenvalues,
λA, whose real parts are zero, and the matrix B is assumed to have eigenvalues,
λB, whose real parts are negative. The matrix B is taken to be a stabile matrix
because our interest is in stability/instability of the nonhyperbolic equilibrium points
of systems. The functions f (x, y) and g(x, y) are assumed to be C2 with f (0, 0)) = 0,
Df (0, 0) = 0, g(0, 0) = 0, and Dg(0, 0) = 0, where Df (0, 0) denotes the Jacobian of
f evaluated at (0, 0). The set S ⊂ R

n + m is a local invariant manifold of Eq. (3.1) if
for any solution (x(t), y(t)) with (x(0), y(0)) ⊂ S there is a positive time T such that
(x(t), y(t)) ⊂ S for t ∈ [0, T].

One could also consider a more general system that is topologically conjugate
to Eq. (3.1), described by ż = w(z), z ∈ R

n+m whose linearization about the
equilibrium point z = 0 yields a Jacobian Dw(0) that has n eigenvalues whose real
parts are zero and m eigenvalues whose real parts are negative. However, in this
chapter we will continue to use Eq. (3.1) since it is more explicit.

Were the functions f and g in Eq. (3.1) to be identically zero, it would simplify
to ẋ = Ax, ẏ = By. Then y = 0 would be an invariant manifold, meaning that
for y(t = 0) = 0, y(t) = 0, for ∀t, and the flow on this subspace would be given
by the simpler equation u̇ = Au. Were the initial condition to be y(t = 0) = δ,
for “small” δ, y(t) would exponentially go to zero, that is, to the invariant manifold
y = 0; the long-term behavior of system (3.1) would again then be provided by the
equation u̇ = Au. This simpler self-contained equation with u ∈ R

n can be viewed
as a kind of “reduction” of the k := n + m dimensional system (3.1) to one of lower
dimension, namely, n.

The generalization of this idea of decoupling the dynamics and, in essence,
reducing the order of the system’s dimension when the functions f and g are not
identically zero is provided by the central results obtained in center manifold theory.
It can be shown that the system described by Eq. (3.1) has the following properties
[2–7]:



3 Control of Nonhyperbolic Dynamical Systems Through Center Manifold Control 71

Existence
There exists a smooth (Ck) m-dimensional center manifold of the form y = h(x),
‖x‖ < δ, such that y(0) = h(0) = 0 and Dh(0) = 0. The dynamics on this center
manifold are governed by the equation:

u̇ = Au+ f (u, h(u)) . (3.2)

In other words, system (3.1) whose dimension is k := n + m possesses a lower-
dimensional center manifold of dimension m, and the dynamics on this manifold is
self-contained and given by the n-dimensional system (3.2).

Stability
Suppose that the zero solution of Eq. (3.2) is stable (asymptotically stable) (unsta-
ble), then the zero solution of Eq. (3.1) is stable (asymptotically stable) (unstable).

Asymptotic Behavior of Trajectories
Suppose that the zero solution is stable. Let (x(t), y(t)) be a solution of Eq. (3.1) with
the initial condition ((x(0), y(0)) sufficiently small (though in practice, sufficiently
small may be quite substantial); then there exists a solution of Eq. (3.2), u(t), such
that as t → ∞:

x(t) = u(t)+ O
(
e−γ t) , y(t) = h (u(t))+ O

(
e−γ t) , (3.3)

where γ > 0 is some constant.

In other words, from a sizable range of initial conditions near the origin, all
solutions of Eq. (3.1) tend exponentially in time to a solution on the center manifold.
The n-dimensional reduced system given by Eq. (3.2) on the m-dimensional center
manifold y = h(x) faithfully models the original system (3.1) as t → ∞.

Approximation
To get an approximation of the center manifold, y = h(x) is substituted in the second
relation is Eq. (3.1) to obtain, using the chain rule,

Dh(x) [Ax + f (x, h(x))] − Bh(x)− g (x, h(x)) = 0 (3.4)

which is required to be solved along with the conditions that h(0) = 0 and Dh(0) = 0.
An approximation to h(x) is obtained by defining:

Mh̃(x) := Dh̃(x)
[
Ax + f

(
x, h̃(x)

)]
− bh̃− g

(
x, h̃(x)

)
(3.5)

and attempting to solve approximately Mh̃ = 0. Here, let h̃ be a map from R
n into

R
m with h̃(0) = 0 and Dh̃(0) = 0. If as x → 0, Mh̃ = O

(‖x‖q) then h(x) =
h̃(x)+ O

(‖x‖q). In other words, if Eq. (3.4) is satisfied to some order of accuracy,
then the center manifold will have been found to the same order of accuracy.
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Often, in bifurcation studies, a p-vector, ε, consisting of constant parameters, is
present in Eq. (3.1). Then, if [1]:

Mh̃ = O
(‖x‖q, ‖ε‖s) , then h(x) = h̃(x)+ O

(‖x‖q, ‖ε‖s) . (3.6)

Remark 1 The center manifold, y = h(x), is generated by our desire that it satisfies
Eq. (3.4), but finding a suitable h(x) so that this equation is exactly satisfied is usually
not possible, because it would be tantamount to solving the nonlinear Eq. (3.1).
Hence the approximate solution correct to some order is sought by setting Mh̃ = 0.
Often a power series approximation is used.

Assuming now that Eq. (3.1) is a model of a naturally occurring system or
an engineered system, we could envisage controlling the system by controlling
its center manifold so in the presence of the control: (1) instead of getting an
approximation to h(x) that is correct to some O(‖x‖q, ‖ε‖s) as in Eq. (3.6), we
can obtain the function exactly, and (2) we can make a system that is unstable at
a hyperbolic equilibrium point asymptotically stable by suitable choices of center
manifolds that are cognizant of practical needs, limitations, and requirement, for
controlling the system. It is these aspects of control that are related to center
manifold theory that this chapter is centrally concerned with.

3.2 Control of Dynamical Systems with Nonhyperbolic
Equilibrium Points

Our intent is to provide a method to control the unstable dynamics at a nonhyper-
bolic equilibrium point (which is taken, with no loss of generality, to occur at the
origin) and make this nonhyperbolic equilibrium point asymptotically stable.

To illustrate the central ideas addressed in this chapter, we begin with a simple
example. Consider the system of equations:

ẋ = xy + ax3 + bxy2 = 0x + f (x, y)

ẏ = −y + cx2 + dx2y = −y + g (x, y)
(3.7)

in which a, b, c, and d ∈ R are constants and form the parameter 4-vector
ε = [a, b, c, d]T. The matrix A = 0, and B = − 1 here. By the Existence property
above, a center manifold y = h(x) exists, which can be obtained by solving Eq. (3.4),
which here is:

h′(x)
[
xh(x)+ ax2 + bxh(x)2

]
+ y − cx2 − dx2y = 0. (3.8)

Using Eq. (3.6), an approximation to the center manifold is obtained by setting
Mh̃(x) = 0. Assuming that Mh̃(x) = O

(
x2
)

this gives (see [1] for details):



3 Control of Nonhyperbolic Dynamical Systems Through Center Manifold Control 73

Mh̃(x) = h̃(x)− cx2 +O
(
x4
)

= 0, (3.9)

so that

h(x) = h̃(x)+O
(
x4
)

= cx2 +O
(
x4
)
. (3.10)

Eq. (3.2) then yields, from the Existence property given in Sect. 3.1 above, that

u̇ = uh(u)+ au3 + buh2(u) = (a + c) u3 +O
(
x5
)
. (3.11)

When a + c < 0, Eq. (3.11) is asymptotically stable at the origin, and by the
Stability property of the previous section, so is Eq. (3.7). When a + c > 0, Eq.
(3.11) is unstable at the origin, and therefore so is Eq. (3.7). The situation when
a + c = 0 poses a difficulty and a higher order approximation is required [1].

While this might be satisfactory in certain situations, from an engineering
controls perspective, it leaves open the following practical questions:

1. What if the parameters a and c describing the system were such that a + c > 0?
How would one control such a system with a nonhyperbolic equilibrium point
and make the nonhyperbolic equilibrium point asymptotically stable?

2. Often one is interested in controlling a system to follow a given trajectory or
in controlling a system so that all its orbits in phase space lie on a prespecified
curve (surface, in higher dimensions) as they approach an equilibrium point, so
how does one control the system?

3. For engineering applications, one is often interested in the exact description of a
local center manifold, instead of obtaining a center manifold that, in this example,
is locally approximated by h(x) = cx2 + O(x4). How can one ensure that the
center manifold is exactly given by h(x) = cx2?

4. More generally, what if one wanted to create, as we shall see below, a center
manifold for a given system described by y = s(x), where s is a preferred function
of x?

It is the answers to questions like these, which arise mainly from a “controls”
perspective, that this chapter deals with.

We note that: (i) Eq. (3.10) gives only an approximation to the center manifold
and (ii) Eq. (3.11) that gives the dynamics on the center manifold is also approxi-
mately and qualitatively obtained, with our understanding pinned to what happens
as ‖x‖ → 0, though it might be applicable to a region considerably larger.

From an engineering viewpoint, we may want that the system has a desired center
manifold and that the dynamics on it evolve in a definite manner. Noting that the
center manifold relies on having y = h(x) satisfy the second equation of system
(3.7), from an engineering viewpoint, one can add a control to this equation so that
we now have the controlled system:
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ẋ = xy + ax3 + bxy2 = 0x + f (x, y)

ẏ = −y + cx2 + dx2y + w(x) = −y + gc (x, y))
(3.12)

where w(x) is the nonlinear control that is added, with w(0) = ẇ(0) = 0; the
subscript “c” on g denotes the controlled system.

One could perhaps then determine the control w(x) and, instead of having a
somewhat vaguely defined approximation of the center manifold given in Eq. (3.10),
demand that the center manifold of the controlled system be exactly y = h(x) = c0xβ

for a suitable (integer) value of β. We note that since we require h(0) = Dh(0) = 0,
we must have β ≥ 2. Substituting y = c0xβ in the second equation in (3.12), we get

w(x) = βc0x
β−1

[
c0x

β+1 + ax3 + bc2
0x

2β+1
]+ c0x

β − cx2 − c0dx
β+2

= c2
0βx

2β
(
1 + bc0x

β
)+ c0 (aβ − d) xβ+2 + c0x

β − cx2.

(3.13)

This provides the explicit control w(x) to be applied to Eq. (3.7) so that the center
manifold of the controlled system is exactly given by y = c0xβ , and the dynamics
unfurls on this center manifold according to the equation:

u̇ = uh(u)+ au3 + buh2(u) = c0u
β+1 + au3 + c2

0bu
2β+1. (3.14)

Notice that the dynamics only depends on the parameters a and b of the
uncontrolled system that appear in the (x-equation) and the parameter c0 that defines
the “controlled” center manifold. By the Stability property in the previous section,
asymptotic stability of the origin in system (3.12) is assured when the origin in Eq.
(3.14) is asymptotically stable.

From a controls perspective, in order to ensure stability of the nonhyperbolic
origin, the “controlled” center manifold needs to be selected with an eye to making
the reduced system, which is described by Eq. (3.2), stable at the origin. As seen
from Eq. (3.14), β would thus need to be an even integer.

Numerical Example 1 The following numerical example captures the usefulness of
this simple approach to the control of nonlinear systems in the vicinity of unstable
nonhyperbolic equilibrium points rendering them asymptotically stable.

(i) When a + c < 0, as suggested by Eq. (3.10), a suitable controlled center manifold
can be taken as y = c0xβ with c0 = c = − 2 and β = 2. This is brought about
by controlling the second equation in (3.12) with the control w(x) given in Eq.
(3.13)

The phase plot of the controlled system that employs the control described in
Eq. (3.13) with the parameter vector ε = [0.5, 1, −2, 1]T is shown in Fig. 3.1. As
expected, the equilibrium point at the origin is seen to be asymptotically stable since
a + c0 = − 1.5. The thin solid line, convex upward, shows the manifold which has
exactly the equation y = cx2, and the local dynamics on this manifold is described
using Eq. (3.14) by the equation
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Fig. 3.1 System 3.12 is
controlled so that its center
manifold is y = − 2x2.
a = 0.5, b = 1, c = − 2,
d = 1

u̇ = −1.5u3 + 4u5.

which shows that the equilibrium point u = 0 is asymptotically stable for orbits for
which |u| is sufficiently small. The control w(x) provided in Eq. (3.12) is

w(x) = 8x4
(

1 − 2x2
)
.

Orbits starting from different initial conditions are shown by dash lines. The
initial conditions for each orbit are shown by a solid circle. As seen, the origin
is asymptotically stable over a generous region of initial conditions around it.
Trajectories move toward the center manifold and move along it to reach the origin.

However, the plotted vector field and the orbit shown by the solid line show
that the origin is not globally asymptotically stable; in fact, a pair of unstable
equilibrium points exit at (±0.6123, −0.75) shown by solid squares in the figure
showing that the Stability property, though it yields asymptotic stability of the
equilibrium point, is, of course, local. Determining the basin of attraction of the
nonhyperbolic equilibrium point is generally difficult, and it depends both on the
parameters of the system and the choice of the desired center manifold.

Remark 2 Where the parameter a < 0, one could also have controlled the stability of
the nonhyperbolic equilibrium point at the origin and the behavior of nearby orbits
by controlling the center manifold of the controlled system to be y = h(x) = c0x4,
c0 = ± 1, through the use of a suitable control w(x) (as given in Eq. (3.13)). For
then, Eq. (3.14) would become:

u̇ = uh(u)+ au3 + buh2(u) = au3 ± u5 + bu9, a < 0

whose origin is asymptotically stable for |u| sufficiently small.



76 F. E. Udwadia

Fig. 3.2 System (3.12) is
controlled so that its center
manifold is y = x4.
a = − 0.5, b = 1, c = − 2,
d = 1

This is illustrated for the parameter vector ε = [−0.5, 1, −2, 1]T, now with
a = − 0.5 and c0 = 1 Using the control w(x) = 4x8(1 + x4) + 2x2 + x4 − 3x6

obtained from Eq. (3.13), Fig. 3.2 shows the phase portrait and the vector field of
the controlled system. The center manifold is now controlled to lie on the curve
y = x4 shown by the thin line, which is concave upward now. The equilibrium point
at the origin is asymptotically stable. Representative orbits that start in the vicinity
of the origin move toward it exponentially fast. (Note the orbit shown by the solid
line that does not go the origin, illustrating the local nature of the stability.)

In the vicinity of the origin, the system closely follows the trajectory given by
the equation y = x4

, and the local dynamics (Eq. (3.14)) on this manifold is given
by u̇ = −0.5u3 + u5 + u9.

(ii) When a + c > 0, using the Stability property of the previous section, we see
from Eq. (3.11) that the uncontrolled system (3.7) is unstable at the origin.
However, asymptotic stability of the origin can still be achieved by controlling
the center manifold of system through the addition of a control w(x) as in
Eq. (3.12). For β = 2, the center manifold of the controlled system becomes
y = c0x2. With this as the controlled center manifold, by using Eq. (3.14) with
β = 2, we see that asymptotic stability of the origin of the controlled system
can then be guaranteed by choosing c0 < − a.

Numerical Example 2 Consider the controlled system with the parameter vector
ε = [0.5, 1, 0.5, 1]T for which a + c = 1 > 0. The phase portrait of the uncontrolled
system (3.7) in the vicinity of its unstable nonhyperbolic equilibrium point at the
origin is shown in Fig. 3.3a. As expected from Eq. (3.11), this nonhyperbolic
equilibrium point is unstable.

We now use the control:
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Fig. 3.3 (a) Unstable nonhyperbolic equilibrium point of system (Eq. (3.7)) when a + c > 0
of uncontrolled system. (b) Exponentially stable nonhyperbolic equilibrium point of system (Eq.
(3.12)) whose center manifold is controlled

w(x) = 2x4
(

1 − x2
)

− 1.5x2

to effectively control the center manifold to lie on the curve y = c0x2 = − x2.
Since −1 = c0 < − a = − 0.5, the unstable nonhyperbolic equilibrium point

at the origin in the uncontrolled system is converted to an asymptotically stable
equilibrium point. Figure 3.3b shows the behavior of the controlled system. One
notes that though the statements in the previous section are true for “sufficiently
small” initial conditions, the basin of attraction of the origin controlled in this
manner is quite generous. More importantly, (a) asymptotic stability is guaranteed
by the first three center manifold properties of the previous section without the need
to appeal to the usual Lyapunov direct method that entails finding an appropriate
Lyapunov function, and (b) the system has an explicitly described center manifold,
and trajectories starting on or close to it (and from a generous enough region around
the nonhyperbolic equilibrium point) will very closely track the trajectory given by:

x(t) = u(t), y = c0x
2 = −x2

where u̇ = (c0 + a) u3 + u5 = −0.5u3 + u5. Evidently, any value of c0 < − a can
be chosen depending on practical considerations that may arise when implementing
the control, thereby controlling the center manifold.

Finally, there is no difficulty posed when a + c = 0 in order to ensure asymptotic
stability of the origin as was previously encountered with the uncontrolled system
(see Eq. (3.11)). If a > 0, we see from Eq. (3.14) that the system can be controlled
to have a center manifold y = − c0x2, c0 > a, so that the nonhyperbolic equilibrium
point at the origin is asymptotically stable (in the vicinity of the origin). Similarly,
when a < 0, the center manifold can be controlled to be y = − c0x2, c0 > 0.

This leads us to the following result.
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Result Given the system described by Eq. (3.1), and a C1 function y = h(x)
from R

n → R
m, the system:

ẋ = Ax + f (x, y)

ẏ = By + g (x, y)+ w(x)
(3.15)

The feedback control w(x) ∈ C2, w(0) = 0, Dw(0) = 0 where:

w(x) = Dh(x) [Ax + f (x, h(x))] − Bh(x)− g (x, h(x)) (3.16)

causes the system (3.15) to have the center manifold y = h(x). The dynamics on this
center manifold is described by the n-dimensional equation:

u̇ = Au+ f (u, h(u)) . (3.17)

Proof: We simply apply the Existence property to the system described by Eq.
(3.15). We note that the control is not full-state and is applied to the m-dimensional
subsystem that is described by the y-equation in Eq. (3.15). �
Remark 3 The other three properties given in Sect. 3.1 above follow in a similar
manner. The Asymptotic Behavior of Trajectories property assures us that for each
trajectory of the full dynamical system (3.15) (provided it stays sufficiently close
to the nonhyperbolic equilibrium point), there is a particular solution of the lower-
dimensional system (3.17) on the center manifold that is approached exponentially
fast.

The central idea behind the Result is to provide a control w(x) so that system
(3.15), which has a nonhyperbolic equilibrium point at the origin, has a suitable
center manifold that attracts nearby orbits in a region around the origin and makes
it (the origin) asymptotically stable.

We now use this methodology to the area of mechanics that deals with stability
of the nonhyperbolic equilibrium point that arises at the origin when the angular
velocity of a rigid body is controlled.

Consider the Euler equations for the rotation of a rigid body in the absence of
external torques in the angular velocity space (ω1,ω2,ω3), a problem related to
satellite attitude control in deep space. The aim is to ensure that the system remains
asymptotically stable for small perturbations around the origin. Assuming that the
moments of inertia (MI) about the three principal axes are I1, I2, I3, we obtain the
equations:

ω̇1 = aω2ω3 − α1ω
3
1

ω̇2 = bω3ω1 − α2ω
3
2

ω̇3 = cω1ω2 − α3ω3

(3.18)

where:
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a = (I2 − I3)

I1
, b = (I3 − I1)

I2
, and c = (I1 − I2)

I3
. (3.19)

Our aim is to have the origin (0, 0, 0) asymptotically stable. To achieve stability,
we take the parameters α1, α2, α3 > 0. Thus, the coordinate ω3 is provided linear
negative feedback, while the coordinates ω1 and ω2 are provided negative cubic
feedbacks. For small perturbations from the origin, the control torques resulting
from the cubic feedback terms would be negligible compared to those resulting from
the use of a linear term, resulting in reduced control costs, hence the motivation to
use nonlinear cubic feedback for the evolution of ω1 andω2. We consider different
cases depending on the values of the three principal moments of inertia.

The central idea is to provide a suitable control w(x) so that the controlled system
has a suitable center manifold that attracts nearby orbits in a region around the
nonhyperbolic origin and makes it (the origin) asymptotically stable.

Case 1 I1 < I3 < I2. I3 is the intermediate principal moment of inertia (MI); the
linear feedback is provided to the coordinate that corresponds to this intermediate
moment of inertia I3. From Eq. (3.19) we see that a, b > 0 and c < 0. Note that
the linear feedback is provided to the coordinate ω3 which corresponds to the
intermediate moment of inertia, I3.

The system can be rewritten as:

⎡

⎣
ω̇1

ω̇2

ω̇3

⎤

⎦ =
⎡

⎣
0 0 0
0 0 0
0 0 −α3

⎤

⎦

⎡

⎣
ω1

ω2

ω3

⎤

⎦+
⎡

⎣
aω2ω3 − α1ω

3
1

bω3ω1 − α2ω
3
2

cω1ω2

⎤

⎦ :=
⎡

⎣
0 0 0
0 0 0
0 0 −α3

⎤

⎦

⎡

⎣
ω1

ω2

ω3

⎤

⎦

+
⎡

⎣
f1 (ω1, ω2, ω3)

f2 (ω1, ω2, ω3)

g (ω1, ω2, ω3)

⎤

⎦

(3.20)

showing that the equilibrium point at the origin, ω1 = ω2 = ω3 = 0, is nonhyper-
bolic. From the nature of the feedback control used here, one might intuit that the
equilibrium point is stable. By the Existence property in Sect. 3.1, the system has a
center manifold, described by the equation ω3 = h(ω1,ω2). The center manifold of
the system can be obtained by using Eq. (3.4) which yields

∂h

∂ω1

[
aω2h− α1ω

3
1

]
+ ∂h

∂ω2

[
aω1h− α2ω

3
2

]
+ α3h− ω1ω2 = 0.

An approximate solution of this equation (Eq. (3.5)) assuming that

h̃ = c

α3
ω1ω2 +O

(
‖ω‖4

)
(3.21)
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gives the center manifold, according to the Approximation property given in Sect.
3.1, as

ω3 = c

α3
ω1ω2 +O

(
‖ω‖4

)
(3.22)

and on this manifold, by Eq. (3.2) the dynamical system evolves according to the
relations

u̇1 = ac
α3
u1u

2
2 − α1u

3
1 +O

(‖u‖6) = u1
(
γ1u

2
2 − α1u

2
1

)+O
(‖u‖6)

u̇2 = bc
α3
u2

1u2 − α2u
3
2 +O

(‖u‖6) = u2
(
γ2u

2
1 − α2u

2
2

)+O
(‖u‖6) (3.23)

where γ1 = ac
α3
< 0 and γ2 = bc

α3
< 0. Using the Lyapunov function V (u1, u2) =

(
u2

1 + u2
2

)
/2 we find that

V̇ = u1u̇1 + u2u̇2 = −α1u
4
1 − α2u

4
2 + (γ1 + γ2) u

2
1u

2
2 < 0

so that Eq. (3.23) is asymptotically stable at the origin. It should be noted that the
truncated Eq. (3.23) has only one equilibrium point, except when γ 1γ 2/(α1α2) = 1,
which is a situation that can be excluded from consideration because the feedback
gains α1, α2 and α3 can always be appropriately selected.

Instead of thinking of the local center manifold as given approximately by the
relation w3 = c

α3
ω1ω2 + O

(‖ω‖4), we can start by controlling the system so that
its center manifold is exactly w3 = c0ω1ω2. In fact, one can consider making the
local center manifold of the controlled system to be:

ω3 = c0ω1ω2 + c1ω1ω
3
2 = h (ω1, ω2) (3.24)

in which the constant coefficients c0 and c1 will be chosen to ensure asymptotic
stability of the nonhyperbolic equilibrium point at the origin, accompanied by a
generous neighborhood around it that the equilibrium point attracts.

The controlled system can be written as:

⎡

⎣
ω̇1

ω̇2

ω̇3

⎤

⎦ =
⎡

⎣
0 0 0
0 0 0
0 0 −α3

⎤

⎦

⎡

⎣
ω1

ω2

ω3

⎤

⎦+
⎡

⎣
aω2ω3 − α1ω

3
1

bω3ω1 − α2ω
3
2

cω1ω2 + w (ω1, ω2)

⎤

⎦ (3.25)

and it is identical to that shown in Eq. (3.20), except for the addition of a nonlinear
control torque in the last equation. Substituting for h(ω1,ω2) the expression given
in Eq. (3.16), we obtain explicitly:
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w (ω1, ω2)=ω1ω2

(
c2

0bω
2
1+c2

0aω
2
2+4c0c1bω

2
1ω

2
2+2c0c1aω

4
2−c0α1ω

2
1−c0α2ω

2
2

+c0α3+3c2
1bω

2
1ω

4
2+c2

1aω
6
2 − c1α1ω

2
1ω

2
2−3c1α2ω

4
2+c1α3ω

2
2−c

)

(3.26)

Using Eq. (3.24) in Eq. (3.17), we get:

u̇1 = u1
(
c0au

2
2 − α1u

2
1

)+ c1au1u
4
2

u̇2 = u2
(
c0bu

2
1 − α2u

2
2

)+ c1bu
2
1u

3
2.

(3.27)

The Stability property in Sect. 3.1 tells us that if Eq. (3.27) is stable at the origin,
then the controlled system will also be stable at the origin. Consider the candidate
Lyapunov function:

V (u1, u2) = 1

2

(
u2

1 + u2
2

)
.

Then the time derivative of V along the orbit of the dynamical system (3.27) is
simply:

V̇ = u1u̇1 + u2u̇2 = −α1u
4
1 − α2u

4
2 + c0 (a + b) u2

1u
2
2 + c1 (a + b) u2

1u
4
2,

(3.28)

which is guaranteed to be negative definite for all c0, c1 < 0, since a, b > 0. Thus, by
controlling the center manifold to satisfy Eq. (3.24), the nonhyperbolic equilibrium
point of the controlled system (3.25) is guaranteed to be stable for values of c0,
c1 < 0. Notice the absence of the parameter c in Eq. (3.28) indicating that the stability
of the origin has been made independent of this parameter.

Numerical Example 3 Consider the control of the center manifold of the system
described by Eq. (3.18) so that the center manifold is given exactly by y = − ω1ω2.
Then the control torque required in Eq. (3.25) is

w (ω1, ω2) = −ω1ω2

(
−c2

0bω
2
1 − c2

0aω
2
2 + c0α1ω

2
1 + c0α2ω

2
2 − c0α3 + c

)
.

On this center manifold, the trajectories are given by Eq. (3.27) with c0 = − 1,
and c1 = 0.

Figure 3.4a shows the behavior of system (3.25) in which the moments of inertia
are I1 = 1, I2 = 2.5 and I3 = 2 in consistent units, so that a = 0.5, b = 0.4, and
c = − 0.75. The parameters α1 = α2 = α3 = 0.5. These parameter values for
α1, α2, andα3 will be used throughout for all the cases except in Figs. 3.7 and 3.8
that look at the influence of these parameters on the controlled phase portrait of
the system. The center manifold is shown by the shaded surface, and the start of
each trajectory is shown by a small sphere. Exponential convergence to the center
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Fig. 3.4 (a) System (3.18) is controlled so that its center manifold is ω3 = − ω1ω2. (b) System
(3.18) is controlled so that its center manifold is ω3 = −ω1ω2 − 0.2ω1ω

2
2

manifold occurs, and asymptotic stability of the nonhyperbolic equilibrium point at
the origin is seen. The representative trajectories are tangent to the center manifold
at the origin and are exponentially attracted to the nonhyperbolic equilibrium point
at the origin over a generous region of initial conditions around the origin. Note how
all the trajectories are “guided” to lie on the local center manifold as they approach
the equilibrium point.

Figure 3.4b shows the behavior of the system controlled to have a center manifold
defined by ω3 = −ω1ω2 − 0.2ω1ω

3
2 using the same initial conditions for the

representative trajectories as in Fig. 3.4a. The other parameter values chosen are the
same as above. While the trajectories remain, as expected, tangent at the origin to
the center manifold, and the origin is asymptotically stable, the domain of attraction
of the nonhyperbolic equilibrium point has been somewhat diminished as seen from
the one trajectory that is not attracted any more to the origin.

Case 2
I2 < I3 < I1. I3 is again the intermediate moment of inertia (MI), and from Eq.
(3.19) a, b < 0 and a, b < 0. To ensure that the nonhyperbolic equilibrium point at
the origin is asymptotically stable, we need V̇ given in Eq. (3.28) to be negative
definite; hence, we control the system to achieve this objective, by controlling it to
have a center manifold given by Eq. (3.24) with c0, c1 > 0; this ensures that V̇ is
negative definite. A simple way to see that a control manifold can be used to make
the origin stable is simply to rename the second principal axis as the first principal
axis in Case 1 and vice versa.

Case 3
I1 < I2 < I3. I2 is now the intermediate principal moment of inertia (MI), and I3 is
the largest principal MI. Now, a, c < 0 and b > 0. To ensure asymptotic stability of
the origin when (a + b) > 0, from Eq. (3.28) we see that we can control the center
manifold to be that given by Eq. (3.24) with c0, c1 < 0. When (a + b) < 0, from Eq.
(3.28) we obviously require c0, c1 > 0.

Numerical Example 4 Consider the rigid body with I1 = 1, I2 = 2, I3 = 2.5 so that
a = − 0.5, b = 0.75, and c = − 0.4. Here a + b > 0 and we control the local
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Fig. 3.5 (a) Stability of origin when I1 < I2 < I3 and a + b > 0. (b) Stability of origin when
I1 < I2 < I3 and a + b < 0

center manifold of the system so that it is given by y = − ω1ω2 (Eq. (3.24) with
c0 = − 1 and c1 = 0). The parameters α1 = α2 = α3 = 0.5. The phase portrait
of the controlled system is shown in Fig. 3.5a. As seen, the origin is asymptotically
stable with a generous region in phase space around it that it attracts.

With I1 = 1, I2 = 2, I3 = 6, we have a = − 4, b = 2.5, and c = − 1/6 so
that (a + b) < 0. By controlling the center manifold to be as given in Eq. (3.24)
with c0 = 1.2, and c1 = 0.2 the nonhyperbolic origin is made asymptotically stable
as seen in Fig. 3.5b. Asymptotic stability and trajectories tangential to the center
manifold are again seen.

Using similar reasoning, the center manifold when I2 < I1 < I3 can also be
obtained. Now a < 0 and b, c > 0. The parameter c does not influence our choice of
the parameters that describe the desired center manifold, only the parameters a and
b matter is assuring asymptotic stability of the origin (Eq. (3.28)). Hence, this is the
same as Case 3 discussed earlier, and stability can be assured by a proper choice of
a center manifold.

Case 4
I3 < I1 < I2. Here I1 is the intermediate principal MI and hence the parameters a > 0
and b, c < 0, which is the same as Case 3, which has already been discussed. When
(a + b) > 0, stability of the equilibrium point at the origin is assured by controlling
the system to have Eq. (3.24) be its center manifold with c0, c1 < 0.

Numerical Example 5 Considering the system I1 = 2, I2 = 3.5, I3 = 1, with the
parameters α1 = α2 = α3 = 0.5 so that a = 1.25, b = − 0.286, c = − 1.5. The
controlled local manifold is taken to be Eq. (3.24) with c0 = − 1.2, and c1 = − 0.2.
The phase portrait is shown on Fig. 3.6. As before, the spheres show the initial
conditions from which the representative trajectories start. Asymptotic convergence
to the stable nonhyperbolic equilibrium point at the origin is seen from a sizable
region of phase space. All the trajectories are guided by the control to lie on the
local center manifold ω3 = −1.2ω1ω2 − 0.2ω1ω

3
2 as they approach the equilibrium

point.
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Fig. 3.6 I1 < I2 < I3 and
a + b > 0

Fig. 3.7 α1 = 0, α2 = 0,
andα3 = 0.01

Lastly, we consider the effect of the system’s parameters on the efficacy of the
control. With values of I1, I2, and I3 the same as above we consider a system with
greatly reduced feedback gains (see Eq. (3.18)) of α1 = 0, α2 = 0, and α3 = 0.01.
Thus, there is no feedback to the first two equations, and the feedback to the third
equation is drastically reduced. The nonlinear system is controlled in the vicinity
of its nonhyperbolic fixed point by controlling the local center manifold to be
ω3 = −1.2ω1ω2 − 0.2ω1ω

3
2. Figure 3.7 shows the phase portrait of the system and

the center manifold, and Fig. 3.8 shows the projection of the phase portrait on the
ω1 − ω2 plane. As seen, trajectories starting from the same points as those in Fig.
3.6 again approach the equilibrium point along the center manifold. The trajectory
starting at the leftmost point in Fig. 3.7 appears to go out a distance beyond the
limits of the plot shown and returns to the center manifold.
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Fig. 3.8 α1 = 0, α2 = 0,
andα3 = 0.01

3.3 Conclusions

The analysis of nonlinear systems with hyperbolic equilibrium points is greatly
facilitated by the Grobman-Hartman (GH) result that states that in the vicinity
of such an equilibrium point, the linearized system is topologically equivalent
to the nonlinear system. This result makes possible the control of such systems
in a straightforward and simple manner. However, the presence of nonhyperbolic
equilibrium points makes the GH result inapplicable, and this often poses challenges
in our understanding, our analysis, and our ability to control such systems when
operating in the vicinity of such nonhyperbolic equilibrium points. This chapter
explores a new approach to the control of such systems using results from the theory
of center manifolds.

The central idea is to put in place a control on an easily distinguishable part
(subsystem) of the dynamical system that results in a desirable local center manifold
which ensures asymptotic stability of the nonhyperbolic equilibrium point. The
desired center manifold would depend, in general, on practical considerations such
as actuator requirements, the region of attraction required around the nonhyperbolic
equilibrium point in phase space, etc. A straightforward methodology for doing this
is developed. The system is controlled to have a desired local center manifold upon
which the evolving dynamics is assured to be asymptotically stable.

The nonlinear dynamical system is divided into two parts. The first part consti-
tutes the subsystem that has the nonhyperbolic equilibrium point, and the remaining
hyperbolic subsystem constitutes the second part. As seen, the control effort needs
to be applied only to this remaining subsystem. Therefore, the methodology has the
advantage of not requiring full-state control while guaranteeing asymptotic stability.

While one could use Lyapunov’s direct method in some instances as done here,
a disadvantage of the approach presented here is the difficulty in exactly finding the
region of attraction of the asymptotically stable nonhyperbolic equilibrium point
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after a desirable local center manifold is chosen. As illustrated here, the size of
this region of attraction in phase space depends on the structure of the nonlinear
system, on the parameters of the system, and on the choice of the desired local
center manifold.

Though it has been assumed here that the second remaining subsystem, which is
hyperbolic, is stable, extensions of the approach where it could contain both stable
and unstable hyperbolic equilibrium points can be easily made by using control
methods standardly used when dealing with hyperbolic equilibrium points.

The results obtained here appear to provide a new additional quiver in our arsenal
of methods to bring about control of nonlinear dynamical systems, the focus in
this chapter being on those systems that have nonhyperbolic equilibrium points
in whose vicinity: (i) the nonlinear dynamics is usually more complex, and (ii)
linearization methods do not work. As often done when dealing with the theory of
center manifolds, examples are provided, one of which has considerable relevance to
rigid body dynamics and deals with the control of the angular velocity of a rotating
rigid body. The advantages of using the approach, as illustrated by these examples,
are its simplicity, efficacy, and ease of use.
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